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1 Introduction

Introduction
In this lecture we discuss the multiple linear regression model, variable se-

lection, and statistical testing.

2 The Multiple Regression Model

The Multiple Regression Model
Multiple linear regression is similar in many respects to bivariate regression,

except that there are several X variables.
The multiple regression model states that the conditional distribution of y

given X is normal, and that the conditional mean is a linear function of the
predictors, i.e.,

y = Xβ + ε = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (1)

E(y|X) = Xβ = β0 + β1X1 + β2X2 + . . .+ βpXp (2)

and
V ar(y|X) = σ2 (3)

The Multiple Regression Model
Note that

• The conditional variance is not a function of X, so again the distribution
of regression residuals is normal with constant variance and mean zero

• The intercept can be incorporated into the above specification by including
a column of 1’s in X, putting the intercept in the corresponding (usually
the first) position in β



Calculating Beta
Ordinary least squares (OLS) regression chooses β to minimize the sum of

squared errors. β estimates are calculated as

β̂ = (X ′X)−1X ′y (4)

The β̂ estimates are unbiased with a variance of

V ar(β̂) = σ2(X ′X)−1 (5)

The correlation between the predicted scores ŷ = Xβ̂ and the criterion scores
is called the multiple correlation coefficient, and is almost universally denoted
with the value R.

Since R is always positive, and R2 is the percentage of variance in y ac-
counted for by the predictors. (in the colloquial sense), most discussions center
on R2 rather than R.

When it is necessary for clarity, one can denote the squared multiple corre-
lation as R2

y|x1x2
to indicate that variates x1 and x2 have been included in the

regression equation.

Bias of the Sample R2

When a population correlation is zero, the sample correlation is hardly ever
zero. As a consequence, the R2 value obtained in an analysis of sample data is

a biased estimate of the corresponding population value.

An unbiased estimator exists (Olkin and Pratt, 1958), but is not available
in standard statistics packages. As a result, most packages compute an approx-
imate shrunken (or adjusted) estimate and report it alongside the uncorrected
value. The adjusted estimator when there are k predictors is

R̃2 = 1− (1−R2)
N − 1

N − k − 1
(6)

3 Setting Up a Multiple Regression Model

3.1 Introduction

A Host of Challenges
Specifying a multiple regression model has all the challenges of bivariate

regression, and more. These include:

• Significance tests and confidence intervals for R2
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• Methods for assessing model fit

• Selecting input variables and predictors

• Choosing appropriate transforms to achieve linearity

• Dealing with collinearity

• Deciding whether to include interactions between input variables

• Detecting outliers in the multivariate framework

Some of these issues are unique to the multivariate arena, while others are a
more challenging version of issues we also confront in bivariate regression.

3.2 Significance Tests for R2

Test of R2 = 0
A routine test of the hypothesis that R2 = 0 is performed with an F statistic.

Fk,N−k−1 =
R2/k

(1−R2)/n− k − 1
(7)

=
SSŷ/k

SSε/(N − k − 1)
(8)

where

SSŷ =
N∑
i=1

(ŷi − y)2 (9)

and

SSε =
N∑
i=1

(yi − ŷi)2 =
N∑
i=1

ε2i (10)

Confidence Interval for R2

Most major statistical packages do not report an exact confidence interval
for R2, although one is available. This confidence interval can be quite revealing

when precision of estimate for R2 is inadequate.

Partial F Test of R2 change
Suppose you have k predictors x1, x2, . . . , xk, and you add a new predictor

w. The test that this new predictor has significantly improved R2 (the null
hypothesis is that there is no change) is:

F1,N−k−2 =
R2
new −R2

old

R2
new/(N − k − 2)

(11)

=
SSŷ(new) − SSŷ(old)

SSε(new)
(12)
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3.3 Selecting Input Variables and Predictors

Selecting Input Variables and Predictors
Selecting the input variables is often not an issue — there are only a few

variables, and they were pre-selected because of their relevance. Many of the
examples of Gelman & Hill start with a small set of input variables.

However, in some “exploratory” situations, there is a large list of potential
X variables. A number of different techniques for selecting input variables are
standard in major statistics packages.

Forward Selection
Forward selection proceeds as follows:

1. You select a group of independent variables to be examined

2. The variable with the highest squared correlation with the criterion is
added to the regression equation

3. The partial F statistic for each possible remaining variable is computed

4. If the variable with the highest F statistic passes a criterion, it is added
to the regression equation, and R2 is recomputed

5. Keep going back to step 3, recomputing the partial F statistics until no
variable can be found that passes the criterion for significance

Backward Selection
Backward elimination:

1. You start with all the variables you have selected as possible predictors
included in the regression equation

2. You then compute partial F statistics for each of the variables remaining
in the regression equation

3. Find the variable with the lowest F

4. If this F is low enough to be below a criterion you have selected, remove
it from the model, and go back to step 2

5. Continue until no partial F is found that is sufficiently low

Stepwise Selection
Stepwise regression works like forward regression except that you examine,

at each stage, the possibility that a variable entered at a previous stage has now
become superfluous because of additional variables now in the model that were
not in the model when this variable was selected.
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To check on this, at each step a partial F test for each variable in the model
is made as if it were the variable entered last. We look at the lowest of these
F s and if the lowest one is sufficiently low, we remove the variable from the
model, recompute all the partial F s, and keep going until we can remove no
more variables.

Multiple Regression in R
The “Kids Data” data set contains heights, weights, and ages for 12 children.

> kids.data← read.table("KidsData.txt",header=T)

> kids.data

WGT HGT AGE

1 64 57 8

2 71 59 10

3 53 49 6

4 67 62 11

5 55 51 8

6 58 50 7

7 77 55 10

8 57 48 9

9 56 42 10

10 51 42 6

11 76 61 12

12 68 57 9

We’ll try fitting 3 models. We’ll start with just the intercept, then add the
HGT input variable, and next add AGE.

> attach(kids.data)

> m0 ← lm(WGT˜1)
> m1 ← lm(WGT˜HGT)
> m2 ← lm(WGT˜HGT+AGE)

> m0

Call:

lm(formula = WGT ~ 1)

Coefficients:

(Intercept)

62.75

> m1

Call:

lm(formula = WGT ~ HGT)

Coefficients:

(Intercept) HGT

6.190 1.072
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> m2

Call:

lm(formula = WGT ~ HGT + AGE)

Coefficients:

(Intercept) HGT AGE

6.553 0.722 2.050

Multiple Regression in R
Comparing the models is often done by analysis of variance.

> anova(m0,m1,m2)

Analysis of Variance Table

Model 1: WGT ~ 1

Model 2: WGT ~ HGT

Model 3: WGT ~ HGT + AGE

Res.Df RSS Df Sum of Sq F Pr(>F)

1 11 888.25

2 10 299.33 1 588.92 27.1216 0.0005582 ***

3 9 195.43 1 103.90 4.7849 0.0564853 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Forward Selection
Weisberg gives an example of forward regression in Chapter 10.

R uses the AIC (Akaike Information Criterion) instead of the F statistic in
its step command.

Forward Selection
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Forward Selection

> data(highway)
> a ← highway

> a$logADT ← logb(a$ADT ,2)
> a$logTrks ← logb(a$Trks ,2)
> a$logLen ← logb(a$Len ,2)
> a$logSigs1 ← logb((a$Sigs∗a$Len+1)/a$Len ,2)
> a$logRate ← logb(a$Rate ,2)
> # set the contrasts to the R default

> options(contrasts=c( factor ="contr.treatment",ordered="contr.poly"))

> a$Hwy ← i f ( i s . nu l l (version$language) == FALSE) factor (a$Hwy ,ordered=FALSE) else factor (a$Hwy)
> attach(a)

> names(a)

[1] "ADT" "Trks" "Lane" "Acpt" "Sigs" "Itg"

[7] "Slim" "Len" "Lwid" "Shld" "Hwy" "Rate"

[13] "logADT" "logTrks" "logLen" "logSigs1" "logRate"

> cols ← c(17,15,13,14,16,7,10,3,4,6,9,11)
> m1 ← lm(logRate ˜ logLen+logADT+logTrks+logSigs1+Slim+Shld+

+ Lane+Acpt+Itg+Lwid+Hwy)

Forward Selection

> summary(m1)

Call:

lm(formula = logRate ~ logLen + logADT + logTrks + logSigs1 +

Slim + Shld + Lane + Acpt + Itg + Lwid + Hwy)

Residuals:

Min 1Q Median 3Q Max

-0.646354 -0.147045 -0.009977 0.176454 0.607610

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.704639 2.547137 2.240 0.0342 *

logLen -0.214470 0.099986 -2.145 0.0419 *

logADT -0.154625 0.111893 -1.382 0.1792

logTrks -0.197560 0.239812 -0.824 0.4178

logSigs1 0.192322 0.075367 2.552 0.0172 *

Slim -0.039327 0.024236 -1.623 0.1172

Shld 0.004291 0.049281 0.087 0.9313

Lane -0.016061 0.082264 -0.195 0.8468

Acpt 0.008727 0.011687 0.747 0.4622

Itg 0.051536 0.350312 0.147 0.8842
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Lwid 0.060769 0.197391 0.308 0.7607

Hwy1 0.342705 0.576821 0.594 0.5578

Hwy2 -0.412295 0.393960 -1.047 0.3053

Hwy3 -0.207358 0.336809 -0.616 0.5437

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3761 on 25 degrees of freedom

Multiple R-squared: 0.7913, Adjusted R-squared: 0.6828

F-statistic: 7.293 on 13 and 25 DF, p-value: 1.247e-05

Forward Selection

> m0 ← lm(logRate ˜logLen ,data=a)
> ansf1 ← step(m0,scope= l i s t ( lower=˜logLen ,
+ upper=˜logLen+logADT+logTrks+logSigs1+Slim+Shld+
+ Lane+Acpt+Itg+Lwid+Hwy),

+ direction="forward", data=a)

Start: AIC=-43.92

logRate ~ logLen

Df Sum of Sq RSS AIC

+ Slim 1 5.302 6.112 -66.278

+ Acpt 1 4.374 7.040 -60.767

+ Shld 1 3.553 7.861 -56.464

+ logSigs1 1 2.001 9.413 -49.437

+ Hwy 3 2.789 8.625 -48.848

+ logTrks 1 1.515 9.898 -47.477

+ logADT 1 0.892 10.522 -45.094

<none> 11.414 -43.921

+ Lane 1 0.547 10.867 -43.835

+ Itg 1 0.452 10.962 -43.496

+ Lwid 1 0.385 11.029 -43.259

Step: AIC=-66.28

logRate ~ logLen + Slim

Df Sum of Sq RSS AIC

+ Acpt 1 0.600 5.512 -68.310

+ logTrks 1 0.548 5.564 -67.940

<none> 6.112 -66.278

+ logSigs1 1 0.305 5.807 -66.277

+ Hwy 3 0.700 5.412 -65.024

+ Shld 1 0.068 6.044 -64.714

+ logADT 1 0.053 6.059 -64.620

+ Lwid 1 0.035 6.078 -64.500

+ Lane 1 0.007 6.105 -64.324
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+ Itg 1 0.006 6.107 -64.313

Step: AIC=-68.31

logRate ~ logLen + Slim + Acpt

Df Sum of Sq RSS AIC

+ logTrks 1 0.360 5.152 -68.944

<none> 5.512 -68.310

+ logSigs1 1 0.250 5.262 -68.120

+ Shld 1 0.072 5.440 -66.823

+ logADT 1 0.032 5.480 -66.534

+ Lane 1 0.031 5.481 -66.530

+ Itg 1 0.028 5.484 -66.509

+ Lwid 1 0.026 5.485 -66.497

+ Hwy 3 0.453 5.059 -65.652

Step: AIC=-68.94

logRate ~ logLen + Slim + Acpt + logTrks

Df Sum of Sq RSS AIC

<none> 5.152 -68.944

+ Shld 1 0.136 5.016 -67.987

+ logSigs1 1 0.105 5.047 -67.749

+ logADT 1 0.065 5.087 -67.439

+ Hwy 3 0.540 4.612 -67.263

+ Lwid 1 0.040 5.112 -67.245

+ Itg 1 0.023 5.129 -67.117

+ Lane 1 0.007 5.145 -66.996

> Slim.centered ← Slim - mean(Slim)
> two.var.fit ← lm(logRate ˜ logLen + Slim.centered)

> summary(two.var.fit)

Call:

lm(formula = logRate ~ logLen + Slim.centered)

Residuals:

Min 1Q Median 3Q Max

-0.63450 -0.30111 0.01509 0.29034 1.05981

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.92531 0.28230 10.363 2.38e-12 ***

logLen -0.32122 0.07964 -4.033 0.000274 ***

Slim.centered -0.06621 0.01185 -5.588 2.47e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.412 on 36 degrees of freedom

Multiple R-squared: 0.6394, Adjusted R-squared: 0.6194

F-statistic: 31.92 on 2 and 36 DF, p-value: 1.062e-08

Setting Up Interaction Terms
In the model specification language, two way interactions are set up as fol-

lows:

> interaction.fit ← lm(logRate ˜ logLen + Slim.centered +

+ logLen:Slim.centered)

> summary(interaction.fit)

Call:

lm(formula = logRate ~ logLen + Slim.centered + logLen:Slim.centered)

Residuals:

Min 1Q Median 3Q Max

-0.63451 -0.29502 0.01204 0.28903 1.05641

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.935651 0.295048 9.950 9.67e-12 ***

logLen -0.323567 0.082375 -3.928 0.000384 ***

Slim.centered -0.060553 0.040994 -1.477 0.148589

logLen:Slim.centered -0.001711 0.011856 -0.144 0.886090

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4178 on 35 degrees of freedom

Multiple R-squared: 0.6396, Adjusted R-squared: 0.6087

F-statistic: 20.71 on 3 and 35 DF, p-value: 6.847e-08
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